Heading Date QTL in Winter Wheat (Triticum aestivum L.) Coincide with Major Developmental Genes VERNALIZATION1 and PHOTOPERIOD1

نویسندگان

  • Mohammed Guedira
  • Mai Xiong
  • Yuan Feng Hao
  • Jerry Johnson
  • Steve Harrison
  • David Marshall
  • Gina Brown-Guedira
چکیده

In wheat (Triticum aestivum L.), time from planting to spike emergence is influenced by genes controlling vernalization requirement and photoperiod response. Characterizing the available genetic diversity of known and novel alleles of VERNALIZATION1 (VRN1) and PHOTOPERIOD1 (PPD1) in winter wheat can inform approaches for breeding climate resilient cultivars. This study identified QTL for heading date (HD) associated with multiple VRN1 and PPD1 loci in a population developed from a cross between two early flowering winter wheat cultivars. When the population was grown in the greenhouse after partial vernalization treatment, major heading date QTLs co-located with the VRN-A1 and VRN-B1 loci. Copy number variation at the VRN-A1 locus influenced HD such that RIL having three copies required longer cold exposure to transition to flowering than RIL having two VRN-A1 copies. Sequencing vrn-B1 winter alleles of the parents revealed multiple polymorphisms in the first intron that were the basis of mapping a major HD QTL coinciding with VRN-B1. A 36 bp deletion in the first intron of VRN-B1 was associated with earlier HD after partial vernalization in lines having either two or three haploid copies of VRN-A1. The VRN1 loci interacted significantly and influenced time to heading in field experiments in Louisiana, Georgia and North Carolina. The PPD1 loci were significant determinants of heading date in the fully vernalized treatment in the greenhouse and in all field environments. Heading date QTL were associated with alleles having large deletions in the upstream regions of PPD-A1 and PPD-D1 and with copy number variants at the PPD-B1 locus. The PPD-D1 locus was determined to have the largest genetic effect, followed by PPD-A1 and PPD-B1. Our results demonstrate that VRN1 and PPD1 alleles of varying strength allow fine tuning of flowering time in diverse winter wheat growing environments.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Predictions of heading date in bread wheat (Triticum aestivum L.) using QTL-based parameters of an ecophysiological model

Prediction of wheat phenology facilitates the selection of cultivars with specific adaptations to a particular environment. However, while QTL analysis for heading date can identify major genes controlling phenology, the results are limited to the environments and genotypes tested. Moreover, while ecophysiological models allow accurate predictions in new environments, they may require substanti...

متن کامل

Identification of major and minor genes associated with heading date in an indica × indica cross of rice (Oryza Sativa L.)

In this study, quantitative trait loci (QTLs) controlling rice heading date were detected in a F2:3 population derived from a cross between an indica rice variety, Tarom Mahalli, with early heading date, and an indica variety, Khazar, with late heading date. SSR linkage map was constructed using 74 polymorphic markers and 192 F2 individuals and covered a total of 1231.50 cM of rice genome. QTL ...

متن کامل

Discrete developmental roles for temperate cereal grass VERNALIZATION1/FRUITFULL-like genes in flowering competency and the transition to flowering.

Members of the grass subfamily Pooideae are characterized by their adaptation to cool temperate climates. Vernalization is the process whereby flowering is accelerated in response to a prolonged period of cold. Winter cereals are tolerant of low temperatures and flower earlier with vernalization, whereas spring cultivars are intolerant of low temperatures and flower later with vernalization. In...

متن کامل

Allelic Variation in Developmental Genes and Effects on Winter Wheat Heading Date in the U.S. Great Plains

Heading date in wheat (Triticum aestivum L.) and other small grain cereals is affected by the vernalization and photoperiod pathways. The reduced-height loci also have an effect on growth and development. Heading date, which occurs just prior to anthesis, was evaluated in a population of 299 hard winter wheat entries representative of the U.S. Great Plains region, grown in nine environments dur...

متن کامل

Effects of an intercultivaral chromosome substitution on winterhardiness and vernalization in wheat.

During a study on the genetic control of winterhardiness in winter wheat (Triticum aestivum L. group aestivum), a gene that affected vernalization was found on chromosome 3B in the winter wheat cultivar ;Wichita.' When chromosome 3B from Wichita was substituted into the winter wheat cultivar ;Cheyenne,' the resultant substitution line exhibited a spring growth habit. This is unusual since a cro...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 11  شماره 

صفحات  -

تاریخ انتشار 2016